Homework #4 of Topology II Due Date: Feb 28, 2018

- 1. Let X be the union of the unit sphere in 3-space with the straight line segment from the north pole to the south pole. Find $\pi_1(X)$.
- 2. Let X be the union of the unit sphere in 3-space with the unit disk in the xy-plane. Find $\pi_1(X)$.
- 3. Let X be the quotient space of D^2 obtained by identifying points on the boundary that are 120° apart. Find $\pi_1(X)$.
- 4. Let X be the quotient space of an annulus obtained by identifying antipodal points on the outer circle and identifying points on the inner circle which are 120° apart. Find $\pi_1(X)$.
- 5. Let $X \subset \mathbb{R}^m$ be the union of convex open subsets X_1, X_2, \dots, X_n such that $X_i \cap X_j \cap X_k \neq \emptyset$ for all i, j, k. Show that X is simply connected.
- 6. Show that the complement of a finite set of points in \mathbb{R}^n is simply connected if $n \geq 3$.
- 7. Let $X \subset \mathbb{R}^3$ be the union of *n* lines through the origin. Compute the group $\pi_1(\mathbb{R}^3 X)$.