Homework \#4 of Topology II

Due Date: Feb 28, 2018

1. Let X be the union of the unit sphere in 3 -space with the straight line segment from the north pole to the south pole. Find $\pi_{1}(X)$.
2. Let X be the union of the unit sphere in 3 -space with the unit disk in the $x y$-plane. Find $\pi_{1}(X)$.
3. Let X be the quotient space of D^{2} obtained by identifying points on the boundary that are 120° apart. Find $\pi_{1}(X)$.
4. Let X be the quotient space of an annulus obtained by identifying antipodal points on the outer circle and identifying points on the inner circle which are 120° apart. Find $\pi_{1}(X)$.
5. Let $X \subset \mathbb{R}^{m}$ be the union of convex open subsets $X_{1}, X_{2}, \cdots X_{n}$ such that $X_{i} \cap X_{j} \cap X_{k} \neq \emptyset$ for all i, j, k. Show that X is simply connected.
6. Show that the complement of a finite set of points in \mathbb{R}^{n} is simply connected if $n \geq 3$.
7. Let $X \subset \mathbb{R}^{3}$ be the union of n lines through the origin. Compute the group $\pi_{1}\left(\mathbb{R}^{3}-X\right)$.
